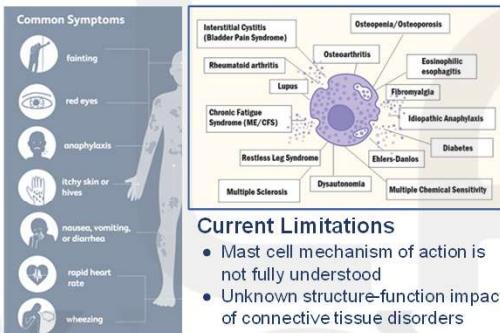
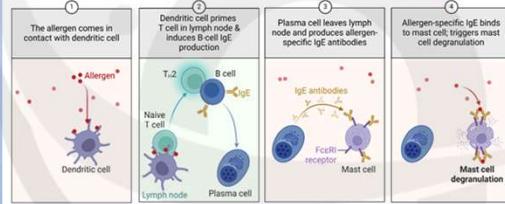


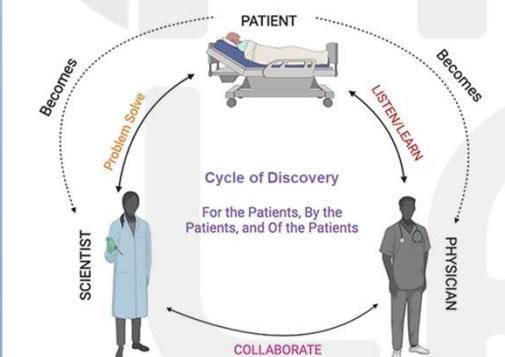
# Bridging Lived Experience and Research: Developing Bone Marrow-Derived Mast Cells to Study Mast Cell Activation Syndrome




Eva Joly<sup>1</sup>, Lyndsay Avery<sup>1</sup>


<sup>1</sup>Department of Biology, Saint Michael's College, Colchester, VT

## Introduction


Mast cell activation syndrome (MCAS) refers to a group of disorders that occurs when there is an overproduction or excessive degranulation of mast cells. Often occurring with comorbid conditions involving connective tissues and is believed to effect **1 in every 10,000 to 20,000 people**.<sup>1</sup>



## Activation of Mast Cells *in vivo*



## Patient-Scientist Model<sup>3</sup>



## Acknowledgements

- VBRN for exploratory funding to LA
- Current & past members of the Avery Lab
- Binh Phong for technical advising
- Original figures created with BioRender.com and RStudio

## Developing Mast Cells *in vitro*

Differentiating stem cells from mouse bone marrow to create a pure mast cell culture.

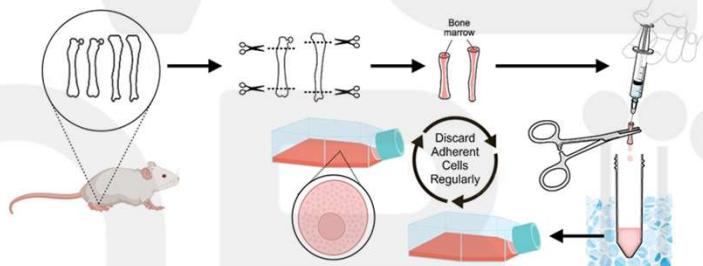



Figure 1: Flow Cytometry of Maturing Mast Cells Over Time

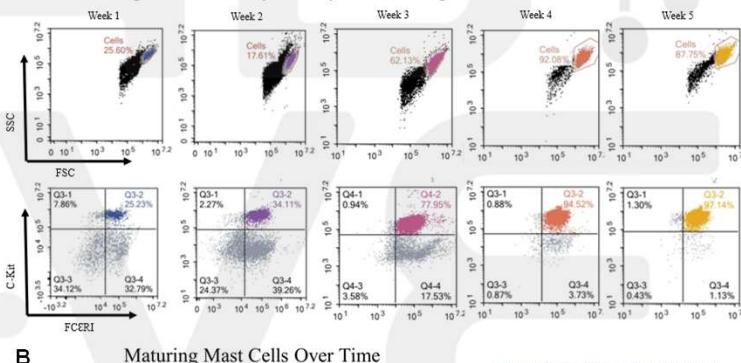



Figure 1: Over 5 weeks of *in vitro* culture, mast cells differentiate to 97.14% purity. Bone marrow cells were isolated from C57BL/6 mice were cultured in media with IL-3. Fed and passaged every 3-4 days. Each week, a sample was collected and stained for c-kit and FcεRI with double positive indicating maturity. Cells were then analyzed by flow cytometry. (A) Shows FSC/SSC gate (top) and c-kit and FcεRI gating (bottom) within the "cells" population. (B) Graph represents the increase in c-kit<sup>+</sup> FcεRI<sup>+</sup> over each week.

- For weeks 1-4, cells were passaged with feeding every 3-4 days to discard adherent cells.
- By Week 4 cells were passaged as needed with feedings ~1x a week.
- Once ideal purity is reached the model can be used for several weeks.
- By Week 9 we observed cell growth greatly diminished with increased debris and cell death.

## Inducing Degranulation with Ca<sup>+</sup> Ionophore A23187

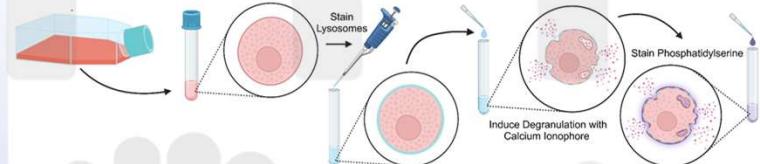



Figure 2: Flow Cytometry of Ca<sup>+</sup> Induced Degranulation Over Time

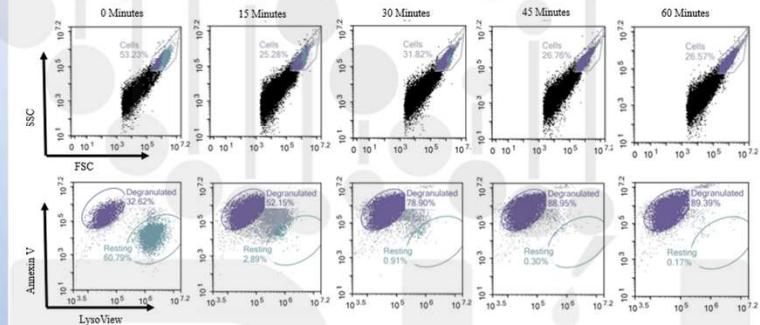
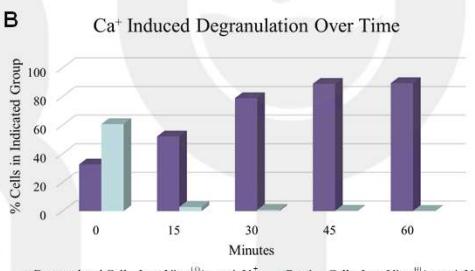




Figure 2: Mast cell degranulation induced using calcium ionophore A23187. Mast cells were first stained with LyoView to mark lysosomes then treated with A23187 for indicated time. Following this, the cells in each group were stained with Annexin V for phosphatidylserine (PS). (A) Representative flow plots in each time point with gating used for graph in (B). Blue are resting cells and purple bars are degranulated cells.

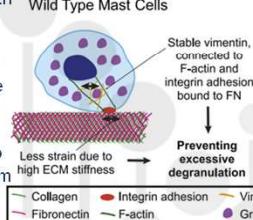


## Future Work - The Role of Connective Tissue

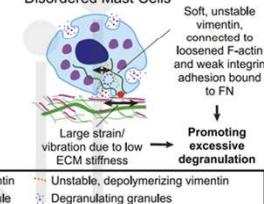
MCAS often co-occurs with

connective tissue disorders. Therefore, creating *in vitro* models

allow exploration into the interplay between these two conditions.


Furthermore, we need to

understand the mechanism


that causes such

phenotypes.<sup>5</sup>

### Wild Type Mast Cells



### Connective Tissue Disordered Mast Cells



Email: ejoly@mail.smvt.edu

Corresponding PI: lavery@smvt.edu

[1] Akar, C. (2017). Mast cell activation syndromes. *Journal of Allergy and Clinical Immunology*, 140(2), 349–355.

[2] Murphy, K., Janevey, C., Alderson, T., Travers, P., & Walport, M. (2012). *Janevey's Immunobiology*. 8th ed. New York: Garland Science.

[3] Patient-Scientist model. (2023). *The NormsLab*.

[4] Chelentko, M. A., Firszt, A. M., Kotova, E. A., Rokitskaya, T. I., Khainova, L. S., Popova, L. B., Chernyay, B. V., & Antonenko, Y. N. (2020). Uanicacid as calcium ionophore and mast cell degranulator. *Biomedicinal Agents (BBA) - Biomedicinal Agents*, 1862(9), 193303.

[5] Royer, S. P., & Han, S. J. (2022). Mechanobiology in the Comorbidities of Ehlers-Danlos Syndrome. *Frontiers in Cell and Developmental Biology*, 10.